Exploiting the Laws of Order in Smart Contracts

Aashish Kolluri
School of Computing, NUS
Singapore

Aquinas Hobor
Yale-NUS College
School of Computing, NUS
Singapore

ABSTRACT

We investigate a family of bugs in blockchain-based smart con-
tracts, which we dub event-ordering (or EO) bugs. These bugs are
intimately related to the dynamic ordering of contract events, i.e.
calls of its functions, and enable potential exploits of millions of
USD worth of crypto-coins. Previous techniques to detect EO bugs
have been restricted to those bugs that involve just one or two event
orderings. Our work provides a new formulation of the general
class of EO bugs arising in long permutations of such events by
using techniques from concurrent program analysis.

The technical challenge in detecting EO bugs in blockchain con-
tracts is the inherent combinatorial blowup in path and state space
analysis, even for simple contracts. We propose the first use of
partial-order reduction techniques, using automatically extracted
happens-before relations along with several dynamic symbolic exe-
cution optimizations. We build ETHRACER, an automatic analysis
tool that runs directly on Ethereum bytecode and requires no hints
from users. It flags 8% of over 10, 000 contracts analyzed, providing
compact event traces (witnesses) that human analysts can examine
in only a few minutes per contract. More than half of the flagged
contracts are likely to have unintended behavior.

CCS CONCEPTS

« Security and privacy — Software security engineering; Domain-
specific security and privacy architectures.

KEYWORDS

Smart Contract Security, Concurrency, Ethereum, Happens-Before

ACM Reference Format:

Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Sax-
ena. 2019. Exploiting the Laws of Order in Smart Contracts. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA °19), July 15-19, 2019, Beijing, China. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3293882.3330560

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °19, July 15-19, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6224-5/19/07...$15.00
https://doi.org/10.1145/3293882.3330560

Ivica Nikolic
School of Computing, NUS
Singapore

363

Ilya Sergey
Yale-NUS College
School of Computing, NUS
Singapore

Prateek Saxena
School of Computing, NUS
Singapore

1 INTRODUCTION

A blockchain/cryptocurrency protocol enables a distributed net-
work of mutually-untrusting computational nodes (miners) to agree
on the current state and complete history of a replicated public
ledger. The dominant consensus algorithm was invented to facilitate
decentralized payments in virtual currencies [37], but it has since
been extended to the decentralized applications commonly known
as smart contracts [48]. A typical smart contract on a blockchain
is a stateful program, i.e., a package of code and the mutable data
that describes the contract’s current state, similar to an object in an
OOP language. Both the code and the data are stored in a replicated
fashion on the blockchain. Smart contract transactions (invocations
of contract code) are totally ordered, as agreed upon by a majority
of miners, and replicated across the system.

Smart contracts implement domain-specific logic to act as au-
tomatic and trustworthy mediators. Typical applications include
multi-party accounting, voting, auctions, and puzzle-solving games
with a distribution of rewards. Numerous publicly reported attacks
have resulted in hundreds of millions dollars’ worth of Ether be-
ing stolen or otherwise lost [13, 30]. Further, contracts cannot be
patched once deployed. This emphasizes the importance of pre-
deployment security audits and analyses for smart contracts.

This paper investigates a class of vulnerabilities in smart con-
tracts that arise due to their inherent concurrent execution model.
Contracts can be invoked by multiple users concurrently, and the
ordering of multiple submitted transactions is non-deterministically
decided by miners through a consensus protocol. Contracts can in-
voke other contracts synchronously and call off-chain services asyn-
chronously which return in no pre-determined order. As Ethereum
contracts are stateful, mutations of contract data persist between in-
vocations. Therefore, predicting the result from a set of transactions
invoking a contract requires reasoning about the non-deterministic
order of concurrently-interacting transactions. Developers often
write contracts assuming a certain serialized execution order of
contracts, often missing undesirable behaviors only observable in
complex interleavings. Reasoning about interleaved executions has
historically been difficult for human auditors. Accordingly, tools
that allow developers, auditors, and smart contract users to increase
confidence that contracts behave as expected are useful.

Certain concurrency bugs in Ethereum smart contracts are known.
Prior work has highlighted the susceptibility of contracts to asyn-
chronous callbacks [5, 43]; and how a pair of transactions, when
reordered, can cause contracts to exhibit differing Ether transfers as

https://doi.org/10.1145/3293882.3330560
https://doi.org/10.1145/3293882.3330560

ISSTA °19, July 15-19, 2019, Beijing, China

output [30]. However, the full generality of bugs arising from unex-
pected ordering of events—i.e. calls to contract functions invoked via
transactions and callbacks—has neither been systematically tested
nor fully understood to date. The key challenge is that analyzing
contracts under multiple events spread over many transactions
leads to combinatorial blowup in the analyzed state-space. Existing
tools shrink the search space by checking for properties of a single
event or a single pair of events. For instance, the infamous DAO reen-
trancy bug can be found by checking whether a function can call
itself within a single transaction execution [21], while the OYENTE
tool checks a pair of events for transaction ordering bugs [30].
Problem & Approach. In this work, we develop new and efficient
analysis techniques for Ethereum smart contracts under multiple
events. Our work generalizes beyond several previous classes of
errors into a broader category of concurrency errors we call event-
ordering (EO) bugs. The core idea is to check whether changing
the ordering of events (function invocations) of a contract results
in differing outputs. If a contract exhibits differing outputs under
reordered events, it is flagged as an EO bug; otherwise, event re-
ordering has no impact on outputs and so the contract is EO-safe.

To tackle combinatorial path and state explosion, we develop a
number of optimization techniques. Furthering the “contracts-as-
concurrent-objects” analogy, we show that partial-order reduction
techniques can be applied to contract analysis. Specifically, we can
shrink the number of event combinations (traces) over a set of func-
tions S that we must consider if we determine that the functions in S
can be non-erroneously invoked in only certain orders. This concept
is captured by the classical happens-before (HB) relation [29]. Unlike
traditional programming languages with explicit synchronization
primitives, smart contracts try to implement desirable concurrency
controls using ad-hoc program logic and global state. We show how
to recover the intrinsic HB-relation encoded in contract logic, and
that it substantially reduces the event combinations we must check.
ETHRACER. Our central practical contribution is ETHRACER, an
automatic tool to find EO bugs. We use ETHRACER to measure the
prevalence of EO vulnerabilities in over ten thousand contracts. Less
than 1% of live contracts are accompanied by source code; hence,
our tool does not require source and analyzes Ethereum bytecode
directly. This enables third-party audit and testing of contracts
without source. We take a dynamic testing approach, constructing
inputs and systematically trying all possible function orderings
until a budgeted timeout is reached. Done naively, this approach
would quickly lead to an intractable analysis even for relatively
small contracts, since N function calls to a contract can have N!
orderings. Our approach combines symbolic execution of contract
events with fast randomized fuzzing of event sequences. Our key
optimizations exponentially reduce the search space by eliminating
orderings which violate the induced HB-relation between events.

ETHRACER reports only true EO violations, accompanied by
witnesses of event values that can be concretely executed.
Emperical Results. First, we show that most contracts do not
exhibit differences in outputs. ETHRACER flags 836 (8%) out of over
10,000 analyzed contracts. When contracts do exhibit different
outputs upon re-ordering, we find that they are likely to have an
unintended behavior more than half of the time. Therefore, our
formulation of properties catches a subtle and dangerous class of
EO bugs without excessively triggering alarms.

364

Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena

Second, ETHRACER minimizes human analysis effort. When
ETHRACER reports EO violations, it provides concrete witnesses
that exhibit differing outputs. Typically there are very few (e.g., 1-3)
witnesses that require human inspection, a process that requires
only a few minutes per contract. Since contracts are not patchable
after deployment, we believe that ETHRACER is useful auditing tool.

Third, we show that our characterization of EO bugs substan-
tially generalizes beyond bugs known from prior works. A direct
comparison to prior work, OYENTE, shows that ETHRACER finds all
78 true EO bugs OYENTE finds as well as many that are not detected
by OYENTE (674 in total). Also, ETHRACER flags 47 contracts by
analyzing asynchronous callbacks into these contracts, by off-chain
services. Such analysis is not captured by any prior work, gener-
alizing this class of errors beyond reentrancy [13] or id-tracking
bugs that fail to pair asynchronous calls and callbacks [43].

2 MOTIVATION

2.1 Ethereum Smart Contracts

Smart contracts in Ethereum are identified by addresses. A user
invokes a particular function of a smart contract by creating a
signed transaction to the contract’s address. The transaction speci-
fies which function is being executed and its arguments. The user
submits the transaction to the Ethereum network, and at some point
in the future, a miner in the network chooses to process the trans-
action. To do so, the miner takes the current state of the contract
from the blockchain, executes the invoked function, and stores the
updated state of the contract back into the blockchain.

It is common for two users to submit transactions that interact
with the same contract concurrently. Neither of the users knows
whose transaction will be mined first. If a user’s transaction is
incorporated into the blockchain then its effect will be reflected
atomically. In other words, a miner will not execute part of the first
transaction, switch to running the second at some intermediate
contract state, and then return to finish off the remaining computa-
tion in the first transaction. It is easy to assume that this transaction
atomicity removes the need to reason about the concurrent execu-
tion environment, but as we explain next this is unsound.

2.2 Event-Ordering Bugs

Contracts can be seen as objects with a mutable state and a set of
interfaces for users to access such state. These interfaces can be
invoked by many users simultaneously; the order in which these
invocations (transactions) will be executed is determined entirely
by the miners. Moreover, contracts can access off-chain services for
various purposes. The replies from these services can be asynchro-
nous, leading to a nondeterministic ordering on the blockchain.

Off-chain asynchronous callbacks. Consider the Casino snippet
in Figure 1, which was simplified from a real smart contract. Casino
accepts bets from one or more players and, with 200-to-1 odds
(Line 11), repays winners 100-fold (Line 12). Casino aims to be
honest, so it rejects any bet it cannot honor (Line 4). The fairness of
any game of chance depends on how random values are generated.
Casino invokes a trusted off-chain random number generator using
the Oraclize API [39] query (Line 5). The random-number oracle
is not actually queried in Line 5. Calling oraclize_query generates
the unique transaction id tag oid and notifies a trusted off-chain

Exploiting the Laws of Order in Smart Contracts

contract Casino {
function bet() payable {
// make sure we can pay out the player
if (address(this).balance < msg.value * 100) throw;
bytes32 oid = oraclize_query(...); // random
bets[oid] = msg.value;
players[oid] = msg.sender; 3}
function __callback(bytes32 myid, string result)
onlyOraclize onlyIfNotProcessed(myid) {
if (parselnt(result) % 200 == 42)
players[myid].send(bets[myid] * 100); }...}

Figure 1: Contract Casino with an asynchronous callback.

monitor (the Oraclize service) that Casino wishes to query the
random-number oracle for transaction oid. Due to the semantics of
Ethereum, the off-chain monitor will be notified only after Casino’s
code has finished running (Line 7). Later, once the off-chain oracle
has been queried, the Oraclize service will make a fresh Ethereum
transaction to invoke Casino’s callback function __callback (Line 8).
The __callback function “returns” asynchronously. After an
initial bettor initiates an oracle query, other bettors can place their
bets while the off-chain oracle is queried. These further wagers
will initiate further oracle queries, and depending on the behavior
of the off-chain oracles, their corresponding callbacks may not be
invoked in the same order as they are called. The designers of the
Oraclize API are aware of this, which is why each transaction is
given a unique ID that is both returned from oraclize_query (Line 5)
and passed to the callback (the myid parameter in Line 8), thereby
“pairing” the two. Failing to pair callbacks can lead to previously-
published vulnerabilities [43], but this error is avoided by Casino.
Even though the call/return are correctly paired, there is a bug
that can occur when multiple players place bets concurrently. Sup-
pose that the contract has 100 Ether and that two players wish to
bet 1 Ether. Consider the following execution of functions: (bet;;
bet,; __callbacky; __callbacky), where the subscript denotes the
paired identifier (oid/myId) in the Oraclize interface. Both bets are
accepted (Line 4), but if both bets win (Line 11), player two will not
be paid anything. A fairer Casino implementation should consider
all pending bets when determining whether to accept another bet.
This contract yields differing outputs if the callbacks are received
out-of-order. The ordering presented above yields an insufficient
balance after paying off player 1 (Line 12). In the alternative ordering
(bety; __callbacky; bety; __callback,), bet, will decline the second
bet due to the check on Line 4, saving the second bettor’s money.
On-chain transaction ordering. Smart contracts implicitly de-
sire to order multiple user requests in a particular sequence, but
sometimes fail to. As an example, Figure 2 shows a shortened ver-
sion of a contract that implements ERC-20-compliant tokens in
Ethereum dubbed “IOU”s. As of today, ERC-20-compliant contracts
manage tokens valued in the billions of USD. The snippet in Figure 2
allows an owner “O” of IOUs to delegate control of a certain _val
of IOU tokens to a specified _spender “S” (e.g., an expense account).
O calls the approve function (Line 3) to allocate _val IOU tokens
to S, and the function transferFrom allows S to send a portion (_val)
of the IOU allocation to an address of S’s choice (_to). The approver
can update the allocation any time: for instance, O may initially
approve 300 IOU and later reduce the amount to 100 by calling

365

ISSTA °19, July 15-19, 2019, Beijing, China

contract IOU {

// Approves the transfer of tokens

function approve(address _spender,
allowed[msg.sender][_spender] =

1

2

3 uint256 _val) {
4

5 return true; }

6

7

8

9

_val;

// Transfers tokens

function transferFrom(address _from, address _to,
uint256 _val) {
require(allowed[_from][msg.sender] >= _val

10 && balances[_from] >= _val

1 && _val > 0);

12 balances[_from] -= _val;

13 balances[_to] += _val;

14 allowed [_from]l[msg.sender] -= _val;

return true; }...}

Figure 2: Contract 10U with on-chain transaction ordering

approve again. Although this may seem like a reasonable idea, as
pointed out on public forums [1], this contract has undesirable se-
mantics, since S can execute a transferFrom between the two calls
to approve, thereby spending the first allocation of 100 and then
having another 100 to spend. Here, two different executions of calls
to approve and transferFrom lead to different outcomes:

Execution 1 Execution 2

approvep (S, 300) approvep (S, 300)
approvep (S, 100) transferFroms (0, S, 100)
transferFroms (0, S, 100) approvep (S, 100)

S has spent 100 and S has spent 100 and

can spend 0 more can spend 100 more

The community has proposed a fix, forbidding a change an
allocation once made [1]. The recommendation ensures that all
calls to transferFrom by all users should be permitted strictly after
all approve have happened. Newer ERC-20 contracts have deployed
this fix and behave more reasonably if such order is enforced, since
the second approve is rejected in the second ordering.

3 OVERVIEW

We discuss a class of bugs which we call event-ordering bugs (for-
mally in Section 4.1), generalizing the examples presented in Sec-
tion 2. We explain the inherent path and state space exploration
complexity and propose our design to address these systematically.

3.1 Problem

A contract function can be invoked by an external transaction, an in-
ternal call from another contract, or via an off-chain asynchronous
callback. We call these invocations events. Under a received event,
a contract executes atomically, which we call a run. A sequence of
events invokes a sequence of contract runs, which we call a trace.
Each run of a contract can modify its Ether balance and global state
as well as generate new transactions that transfer Ether or call
other contracts. We say that the output of a run or a trace are values
of the contract balance, state, and any resulting transactions. We
define these terms more precisely in Section 4.1. An event-ordering
(EO) bug exists in a contract if two different traces, consisting of
the same set of concrete events, produce different outputs. We seek
to check if a given smart contract has an event-ordering (EO) bug.

Our problem formulation is more general than previous work,
e.g. transaction ordering bugs (TOD) [30], which only deal with a

ISSTA °19, July 15-19, 2019, Beijing, China

pair of events that change a contract’s balance. Also, our EO bug
formulation is orthogonal to the concept of reentrancy bugs, e.g.
the DAO, which do not correspond to re-ordering of multiple events.
Re-entrancy bugs are already detected by several tools that analyze
runs from different values for a single event [21, 30].
Intent vs. Bugs. Unlike dereferencing a null pointer, which is
widely-understood as a bug, the bugs uncovered in the present
work tend to arise from logical errors between a contract’s intended
behavior and its implementation. Unfortunately, smart contracts are
usually deployed anonymously and without public documentation;
the true motivations for their deployment can be very obscure.
Therefore, our focus in this work is merely on efficient analysis
techniques that minimize the number of test configurations the
developer or potential user has to manually inspect, before the
contract is deployed irrevocably.

3.2 Our Solution

We take a dynamic testing approach to find EO bugs. This is pri-
marily motivated by our goal to produce concrete witnesses that
human analysts can replay to inspect and confirm EO bugs with no
false violations. The technical barrier to finding reordering bugs is
that the path and the state space of the analysis blows up combina-
torially. To illustrate this, consider a baseline solution that (say) can
reason about the behavior of the contract under different values
of a single input event. One effective state-of-the-art technique
for such analysis is based on dynamic symbolic execution (DSE),
implemented by many existing analyses for contracts [26, 27, 38].
In concept, such a DSE engine can enumerate different paths and
input values (symbolically) in the program, starting from one event
entry point function, and check if two different paths could lead to
different outputs. However, this baseline solution does not address
the class of EO bugs sought directly. EO bugs are a result of two
or more events with possibly different entry points, leading to two
different paths and outputs. Therefore, even with a powerful DSE
engine, checking the space of N events is prohibitive. For instance,
even a (relatively short) sequence of calls to a contract with (say) 20
functions callable via events can have millions of traces to inspect!.
Therefore, we seek techniques that can eliminate a large part of
this path and state space exploration, making search tractable.
Key ideas. The first observation is that contract functions are
often written in a way that have a certain intended order of valid
execution. Executing them in a different order simply results in
the contract throwing an exception. This can be captured as a
partial-order between events or as a happens-before (or hb) relation.
Two events e and ey are in a hb relation if executing them in one
order produces a valid trace while the other is invalid. The insight
is that if we find pairs of events e; and ey that are in hb(es, e3)
relation, all’ permutations of events involving these in an invalid
order will result in exception—therefore, these are redundant to
test repeatedly. To maximize the benefit of this observation, we
augment the baseline DSE to recognize events which are in the hb
relation. The symbolic analysis reasons about a large set of event

1E.g., for a typical contract with 20 functions, each with 2 different inputs, the number
of traces composed of 6 events is C(ﬁzo~2~s) ~ 2%,

2The savings can be exponential, since there are exponentially many permutations
with a shared pair of reordered events.

366

Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena

values encoded as symbolic path constraints, which helps to identify
partially-ordered events much better than fuzzing with concrete
values. We present our novel and efficient algorithm to extract a
new notion of hb relations we define in Section 4.3.

Our second observation is that certain events produce the same
outputs irrespective of which order they appear in any trace. A
simple, but highly effective, optimization is to recognize events runs
that do not write or read global state. Such events can be arbitrarily
reordered without changing outputs, so testing permutations that
simply reorder these is unnecessary. Similarly, events that do not
write to any shared global state can be arbitrarily reordered. Hence,
they are also not considered for inducing an HB relation.

The final key observation deals primarily with optimizing for
contracts with asynchronous callbacks. If we consider traces where
each off-chain request and its matching callbacks are sequentially or
atomically executed, these orders likely yield intended (benign) out-
puts. Thus, we consider such traces in which events corresponding
to different user requests are not “out-of-order” to be linearizable
traces [22]. Now, the task of analysis reduces to finding traces that
do not produce outputs same as that of some linearizable trace.

4 ETHRACER DESIGN

The notion of concurrency in contracts requires a careful mapping
to the familiar concepts of concurrency. We begin by recalling the
contract concurrency model and by precisely defining terminol-
ogy used informally thus far. We utilize the notation used in a
distilled form of Ethereum Virtual Machine (EVM) semantics called
ETHERLITE calculus [30]. Then, we move to ETHRACER’s design.

4.1 Contract Concurrency Model

Recall that each event executes atomically and deterministically in
Ethereum [50]. A miner runs the contract function, conceptually
as a single thread, with provided inputs of an event until it either
terminates or throws an exception.’ If it terminates successfully,
all the changes to the global variables of that execution are com-
mitted to the blockchain; if an exception is thrown, none of the
changes during the execution under that event are committed to
the blockchain. In this sense, the execution of one event is atomic.
The source of concurrency lies in the non-deterministic choices
that each miner makes in ordering transaction in a proposed block.
Contract states and instances. We recall the definitions of global
blockchain state, contracts and messages from ETHERLITE calculus.

A global blockchain state ¢ is encoded as a finite partial map-
ping from an account id to its balance, contract code M and its
mutable state—which is a mapping from field names fld to the
corresponding values. Contract code M and its mutable state , are
optional (marked with “?”) and are only present for contract-storing
blockchain records. We refer to the union of a contract’s field en-
tries fld — v and its balance entry bal + z as a contract state p,*
and denote a triple ¢ = (id, M, p) of a contract with an account id,
the code of which is M and state is p, as contract instance c.

3Here, we do not draw a difference between different origins of exceptions, i.e., those
raised programmatically or those triggered by insufficient gas.

4We will also overload the notation, referring to a state p of a contract id in a blockchain
state o as p = o[id], thus, ignoring its code component.

Exploiting the Laws of Order in Smart Contracts

o 2 ide {bal :N; code? — M; fld? — ‘U}

Messages (ranged over by m) are encoded as mappings from iden-
tifiers to heterogeneous values. Each message stores the identity
of its sender and destination (to), the amount value of Ether being
transferred (represented as a natural number), a contract function
name to invoke, and auxiliary fields (data) containing additional
arguments for a contract function, which we omit for brevity.

m 2 {sender > id;to > id’; value : N; fname : string ;data — ...}

We will refer to a value of an entry x of a message m as m.x.
Contract events. The notion of events captures external inputs
that can force control into an entry point of a contract, defined as:

DEFINITION 1 (EVENTS). An event e for a contract instance ¢ =
(id, M, p) is a pair (fn, m), where fn is a function name defined in M,
and m is a message containing arguments to fn, with fn = m.fname.’

Below, we will often refer to the m-component of an event as
its context. Our contract events are coarse-grained: they are only
identified by entry points and inputs to a specific contract. Event
executions of a contract may invoke other contracts, which only
return values as parameters. Externally called contracts may modify
their own local state, but such external state is not modelled.
Event runs and traces. The run of an event e at a contract instance
¢ = (id, M, p) brings it to a new state p’, denoted p = pl A
sequence of events is called an event trace. An evaluation of contract
at instance po over an event trace h yielding instance p, is denoted

h n . .
as pp = pn = Po A, BN pn, which can be obtained by
executing all events from h consecutively, updating the blockchain

state between steps. Some evaluations may halt abnormally due to a

h
runtime exception, denoted as p = 4. We call such h invalid traces

(at p). Conversely, valid traces evaluate at instance py without an
exception to a well-formed state p,, which is implicit when we

h
write p = pp. We now define an event ordering bug.

DEFINITION 2 (EVENT-ORDERING BUG). For a contract instance
¢ = (id, M, po) and a blockchain state o such that o[id] = po, a pair
of valid event tracesh = [e1, ..., en] andh’ = [e], ..., ey] constitutes
an event-ordering bug iff
e 1 is a permutation of events in h,

h 14
o ifpo = pn and py = p},, then pp # p},.

Since we target multi-transactional executions, we use a coarse-
grained event model that does not capture reentrancy bugs. Further-
more, for the sake of tractability, the definition is only concerned
with a single contract at a time, even though involved events may
modify state of other contracts. Therefore, our notion of EO bugs
only captures the effects on a local state of the contract in focus
and won’t distinguish between states of other contracts.®

5In the EVM, function names are not different from other fields of the message, but
here we make this separation explicit for the sake of clarity.

One could generalize Definition 2, allowing to catch bugs resulting in transferring
money to one beneficiary instead of another, without any local accounting. In this
work, we do not address this class of non-local EO bugs.

367

ISSTA °19, July 15-19, 2019, Beijing, China

4.2 The Core Algorithm

ETHRACER’s basic algorithm systematically enumerates all traces
of up to a bounded length of k events (configurable), for a given
smart contract. One could employ a purely random dynamic fuzzing
approach to generating and testing event traces. However, even for
a single entry point, different input values may exercise different
code paths. In contrast, symbolic execution is a useful technique to
reason about each code path, rather than enumerating input values,
efficiently. One could consider a purely symbolic approach that
checks properties of code paths encoded fully symbolically, to check
for output differences. ETHRACER uses an approach that combines
symbolic analysis of contract code and randomized fuzzing of event
trace combinations in a specific way to find EO bugs.

Symbolic event analysis. ETHRACER first performs a syntactic
analysis to recover the public functions from bytecode of the con-
tract. These functions are externally callable, and thus, these are
entry points for each event. Next, it employs standard dynamic sym-
bolic execution technique to reason about the outputs of each event
separately. For each event e;, the analysis marks the event inputs as
symbolic and gathers constraints down all paths starting from the
entry point of e;. Modulo implementation caveats (as detailed in
Section 5.1), our analysis creates constraints that over-approximate
the set of values that drive down a specified path. Note that since
the symbolic analysis aims to over-approximate the feasible paths
concretely executable under an event, it does not need to always
check the feasibility of each path exactly using SMT solvers in this
phase. As a result of this analysis, for each event e;, we obtain a
vector of symbolic constraints (as SMT formulae) §, that encode
path constraints for the set of execution paths starting from the
entry point of e;. The pairs (e;, S;) is referred to as a symbolic event.
Concretization. Conceptually, symbolic events are concretized in
two separate steps. The first concretization step is standard in DSE
system, where concretization aids path exploration. Specifically, the
feasibility of each path constraints in S; using an off-the-shelf SMT
solver. We eliminate symbolic path constraints for paths that be-
come infeasible. This concretization makes the symbolic constraints
less general, but allows pruning away a lot of false positives due to
assuming infeasible paths or values of symbolic inputs.

The second concretization step aims to create one or more con-
crete value for each path that remains in S;. The goal of this step
is to enumerate all the traces k concrete events long, and fuzz the
contract with these concrete event traces. We use an SMT solver to
find value assignments for all symbolic variables in each element
of ;. These concrete values give us a set of concrete events which
can be directly executed on the Ethereum Virtual Machine.
Happens-Before relations. ETHRACER uses its symbolic analysis
to infer a hb relationship between symbolic events after the first
concretization step. Subsequently, the second concretization step
generates concrete events that respect these hb relations.
Fuzzing with concrete events. ETHRACER does fuzzing with the
concrete events output by the previous steps and flags pairs of
concretely tested traces that exhibit diverging outputs(witness pair)
as EO violations. The procedure is explained in section 5.2

ISSTA °19, July 15-19, 2019, Beijing, China

4.3 Extracting HB Relations

EVM semantics do not feature programming abstractions like Java’s
synchronized [19] or a rigorous specification of dynamic event
precedence [7, 32], which concurrency analysis techniques tar-
geting other languages or platforms use. That said, smart contract
developers impose an intrinsic ordering on events by engineering
ad-hoc synchronization via a mechanism EVM supports natively:
exceptions’ and global variables. Specifically, the contract may set
values for global variables in the processing of one event, and later
check/use these before performing critical operations under sub-
sequent event. If the check/use of the global variable results in an
exception, the second event will not lead to valid trace and the
execution of that event will be nullified. For instance, in Example 2
from Section 2, the event e; = (approve, ((4, 100),...)) always
happens before e; = (transferFrom, ((O, A, 100),...)) since the
require clause prevents the opposite from happening. Our obser-
vation is that if we can detect these cases when there is only one
valid ordering between a pair of events, we do not need to test for
any event orderings where there is an invalid order.

These ordering relations are captured formally by a happens-
before relation [29]. In all event traces, if executing an event e;
before e leads to an exception, but executing e; before e leads to
valid (normal) execution, then we say ey happens before e; (denoted
hb(ez, e1)). Finally, if neither from hb(e;, e2) and hb(ez, e1) holds,
e1 and e can occur in an event trace in any order and are called
independent events. The precise definition of the notion of happens-
before, as used in this paper, is below.

DEFINITION 3 (HAPPENS-BEFORE). For a contract instance ¢, we
say that events e1 and ey are in happens-before relation hb(e1, e2)
wrt. a set of valid event traces H of c iff for any trace h € H, if
h = concat(hi, [e2], ho) and e; € h, then ey € hy. In other words, e;
always precedes ey in a trace h € H, containing both ey and e3.

Recovering the complete hb relation (as defined above) for a
program is difficult even with a powerful symbolic analysis. To
address this challenge, our approach infers a “weaker” form of HB-
relations, which operates on pairs of events, considering traces with
only two events. The following definition makes precise our design
choice and enables a direct implementation strategy.

DEFINITION 4 (WEAK HAPPENS-BEFORE). For a set E of events
of a contract instance ¢ = (id, M, p), two events e1,e; € E are in

a weak happens-before relation (whb(e1, e2)) iff (a) p —= [el’ el o for

ez, e1]
some contract state p’, and (b) p =;:> .

The implementation strategy for extracting weak happens-before
(WHB) is straight-forward. We execute the two differing orderings
of each pair of events in a given trace. If we observe that one order
leads to an exception, and other does not, we inductively learn this
relationship. We can also identify which functions are independent
as per the natural extension of the definition from HB to WHB.

Notice that WHB implies regular HB for traces of two events, but
HB for longer traces can include fewer pairs due to state changes
made by other events in a trace. Using WHB leads to an under-
approximation of the full hb relation, as it may render more pairs of

7In Solidity, exceptions are raised via throw, require and assert.

368

Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena

€1c €2 e1r €2r

.__callback;, .__callbacka,
< [sender ~ o,) ([sender » o, >
myid » 1 myid = 2]
(c.bety,) < c.betz,) l l
[sender ~ si] [sender ~ s2]
({ ({))
\ \ J

Time/Block number
Logical Transaction 1

Logical Transaction 2

Figure 3: A call/return event trace in Casino contract.

events non-independent. This could introduce more false negatives
(i.e., will miss some EO-bugs), but at the advantage of an exponential
reduction in trace combinations to test.

An important final optimization helps the symbolic analysis of
event pairs. ETHRACER builds a weak hb-relation for events pairs
that have functions which share at least one global variable and
at least one of which write to that variable. Only reordering such
functions can lead to different values of global variables and thus
their corresponding events may be in weak hb-relations. ETHRACER
analyzes the symbolic write sets of program paths and uses this
information to guide which events to consider during hb analysis.

4.4 Optimizing for Asynchronous Callbacks

This optimization is based on the observation that certain order-
ings of events are well-paired by EVM semantics. When contract
execution adheres to these prescribed paired orderings, the results
are what the developer likely intended (and must not be flagged).

At present, ETHRACER uses such optimization for asynchronous
calls to Oraclize; It is the most popular off-chain service used by
Ethereum smart contracts, for off-chain resources such as (e.g.,
stock exchanges, random number generators). Oraclize handles the
query offline, by retrieving the data from the required URLs, and
later sends it back to the asking contract by calling its function
__callback in a separate Ethereum transaction.® Hence, a call to
Oraclize would “return” via an asynchronous callback.

Here, for each Oraclize call, there is a matching return or call-
back. Programmers are expected to match returns to the Oraclize
calls, and process accordingly, handling multiple users. The notion
that captures intent (or natural program reasoning) is linearizabil-
ity [22]: each pair of matching call-returns must appear to execute
atomically. That is, if two users issue events that trigger Oraclize
calls, then either the first user’s call-returns are executed before the
second user’s, or the other way around; if their call-return strictly
interleave out-of-order, it leads to an unintended (or unnatural)
behavior. This is evident in the Casino example (Figure 1).

ETHRACER in its fuzzing step recognizes Oraclize calls and asyn-
chronous returns. It first checks all linearizable traces, where match-
ing call-return pairs execute atomically. It memoizes the outputs of
these linearizable traces as “canonical” outputs. Then, it generates
other possible traces during its testing and reports a witness pair
only if the outputs are not equal to all of the canonical outputs. If
a trace is found which does not match any linearized event trace,
ETHRACER flags the contract as having a EO bug, and reports on

8 A contract calling Oraclize must have a function called __callback.

Exploiting the Laws of Order in Smart Contracts

Tappens—|HB Relatior
Contract Function | Functions bp;) Events r EO Bugs &
Bytecode Extractor e_ 0|.'e uzzer Witnesses
Optimizer
Linearizability
Optimizer
Data EthRacer

Figure 4: Main components of ETHRACER.

the closest linearizable trace in the witness pair. One example of
such non-linearizable trace for the Casino contract is presented in
Figure 3. The concept of linearizable event traces can be extended to
other off-chain services which call back into contracts, like Oraclize.

DEFINITION 5 (LINEARIZABLE EVENT TRACES). A valid event trace
h =[e1,...,en] of a contract instance ¢ = {id, M, po) is linearizable

h
iff a state py,, such that pgo = pp, can be obtained by executing a

trace h’, which is a permutation of events in h, such that
(1) it preserves the order of call/return events from h;
(2) non-overlapping logical transactions in h appear in the same order,
as they appear in h.

5 IMPLEMENTATION

ETHRACER is implemented in about 6,000 lines of Python and its
core components are shown in figure 4. It requires either a contract’s
bytecode or its Ethereum address as input . If the latter is given,
ETHRACER assumes the contract is deployed on the main Ethereum
blockchain and gets its bytecode and current global storage from
the blockchain, and stores it locally. Otherwise, it assumes the
contract is not deployed, and thus starts with empty local storage.
ETHRACER first extracts the functions from contract’s bytecode and
generates symbolic events. These events are fed to the dynamic
symbolic execution engine (Happens-Before Optimizer) for HB
analysis. The engine generates concrete events which are then fed
to the Fuzzer. The Linearizability Optimizer handles optimizatinon
for asynchronous callbacks, described in Section 4.4. ETHRACER
finally reports all pairs of traces that lead to EO bugs.

5.1 Dynamic Symbolic Execution Engine

All inputs to the entry points of contract bytecode are marked
symbolic initially. The symbolic execution starts from the first
instruction of the bytecode and interprets sequentially the instruc-
tions following the EVM specification [50], with access to running
stack, global storage, and local memory. The DSE engine keeps two
memory maps: a symbolic map and concrete local map. The local
map is initialized with the concrete blockchain state given as input
to ETHRACER. All global variables of the contract are concretely
initialized from the local copy of the global storage. The DSE en-
gine gathers symbolic values, branch, and path constraints in the
standard way. We check satisfiability of symbolic constraints using
Z3 [12], which can handle operations on numeric and bit-vector
domains. Our present implementation supports symbolic analysis
of 90% of all EVM opcodes. The unhandled instructions preclude
analysis of a small number of paths in 6% of analyzed contracts.

369

ISSTA °19, July 15-19, 2019, Beijing, China

The analysis aims to over-approximate values in its symbolic
path constraints as a default strategy. For instance, when checking
with path feasibility with an SMT solver, if the solver times out, we
assume that the path is feasible. We prune away paths only if the
SMT solver returns UNSAT. We over-approximate the set of pointer
values during the analysis for symbolic memory by not concretizing
it eagerly. Similarly, the DSE engine marks return values of CALL
instructions (which invokes functions from other contracts) as
symbolic. During the DSE analysis (and only during this analysis),
we do not concretely execute the externally called contract, but the
symbolic return value over-approximates the behavior. External
calls cannot modify the caller’s contract state, hence marking only
the return value as symbolic is sufficient.

While our symbolic analysis largely over-approximates, it con-
cretizes in a small number cases which helps improving path cov-
erage. First, when the value of the symbolic variable is needed for
checking path feasibility, we lazily concretize it to drive execution
down that branch. Second, the DSE engine concretizes lookups
for key-value stores (hashmap/hashtable types), which are called
“mappings” in Solidity [47] and implemented using SHA3 as the hash
function. This implementation detail is crucial for finding EO bugs
in many contracts, including the ERC-20 example from Figure 2. If
the lookup key v is symbolic (e.g., it came as a contract call input),
our DSE engine concretizes it to the set of values assigned to it
in concrete executions observed during DSE. In addition, the first
time a symbolic v is accessed in a write, we assign it a new random
concrete value so that the concrete value set is never empty.

Our DSE returns a set of concrete events for functions which
affect the shared global state. However, there might be functions
for which concrete events may not be generated during the HB
analysis. For them, concrete events are generated such that the
events execute independently, without throwing an exception.

5.2 Fuzzing Event Traces

Given the set E of all events produced previously, the fuzzer engine
creates all possible subsets of E up to a certain size.’ For each
subset, all possible traces, which obey the previously discovered HB
relation, are generated. Each such trace is executed on a customized
EVM instance, which in comparison to the original EVM (of original
Ethereum client) is orders of magnitudes faster, as it runs without
performing the proof-of-work mining, and does not participate in a
message exchange with other nodes on the network. If ETHRACER
processes a contract deployed on the main Ethereum blockchain,
the customized EVM initially reads its actual global state, and uses
this copy for all sequential reads and writes of the global storage.
After executing each trace, the global storage and the balance
of the contract are saved. Once all traces for a particular subset
have been executed, the tool finds and outputs a list of pairs of
EO-bug traces, i.e., pairs of traces that result either in different
global storage or in different balances. The tool then performs
minimization by creating a set of pairs of minimal traces of function
calls, reproducing the found EO-bugs. The minimization is done by
implementing a simple shrinking strategy: same events are removed
from the pair of buggy traces, one by one, while checking whether a

9The maximal size is parametrized, thus it can be increased or reduced; we tried sizes
from 2 to 6 in our experiments.

ISSTA °19, July 15-19, 2019, Beijing, China

contract ERC721 {
function addPermission(address _addr) public
onlyOwner { allowPermission[_addr] = true; }
function removePermission(address _addr) public
onlyOwner { allowPermission[_addr] = false; }...}

[E R S R

Figure 5: False positive: fragment of an ERC721 contract.

“smaller” pair of traces still constitute an EO-bug. In our experience,
the size of the set of minimal traces is significantly smaller than the
length of the full list of buggy traces, so having the minimization
procedure provides better user experience and allows for faster
confirmation of witnesses by a human.

6 EVALUATION

We evaluate ETHRACER to measure how many contracts are flagged
as having EO bugs, i.e., how many show differing outputs under
different orderings of events. Further, we measure how much effort
an analyst has to spend per contract to analyze the flagged traces.
We also assess how EO bugs compare to transaction re-ordering
bugs checked by the latest version of OYENTE tool [40]. We high-
light only important findings in this section and provide more case
studies in appendices given as supplementary material. We urge
the readers to refer to them to gain better insights into our results.
Evaluation subjects. Around 1% of the smart contracts deployed
on Ethereum have source code. ETHRACER can directly operate on
EVM bytecode and does not require source. To test the effectiveness
of the tool, we select 5,000 contracts for which Solidity source
code!? is available and another 5, 000 contracts randomly chosen
from the Ethereum blockchain (for which source is unavailable).
Apart from these contracts, for analysis of contracts supporting
asynchronous callbacks, we find 1, 152 unique contracts on the
Ethereum blockchain to which Oraclize callbacks have occurred.
We filter out contracts with less than two Oraclize queries and are
left with 423 unique contracts out of which 154 have Solidity source
code available. We analyze these 423 contracts,
Experimental Setup. We run all our experiments on a Linux
server, with 64GB RAM and 40 CPUs Intel(R) Xeon(R) E5-2680
v2@2.80GHz. We process the contracts in parallel on 30 cores, with
one dedicated core per contract. We set a timeout of 150 minutes
per contract. ETHRACER is configured to output 3 pairs of events
for each pair of functions in the HB relation from its an analysis
component; the timeout per pair of functions in the hb relation is 2
minutes. For each function with no event generated in the hb cre-
ation phase, ETHRACER either generates one event or times out in 1
minute. These events are used for the fuzzing step in ETHRACER. The
outputs of the ETHRACER are a set of pairs of event traces, flagged
as having EO bugs. ETHRACER is publicly available on GitHub.!!

6.1 Efficacy of ETHRACER

ETHRACER flags a total of 836 (8%) EO violations which includes 47
unmatched callback violations in the analyzed contracts, holding
hundreds of millions of dollars worth of Ether over their lifetime.
Out of the 10,423 analyzed contracts, 836 are flagged as hav-
ing EO bugs. 47 contracts out of 423 analyzed are buggy due to

1OWe obtain contract source codes from the popular website Etherscan [2].
Hhttps://github.com/ashgeek/Ethracer

370

Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena

asynchronous callbacks. Currently, 28 of them are live and are
transaction-intensive overall, as they have handled 55, 946 transac-
tions in their lifetime. Among the remaining 789 contracts which
are flagged for on-chain transaction ordering, 674 have source code,
which we manually analyze, and 115 are from the set of contracts
without source. At present, 785 out of 789 contracts are live and
the volume of processed transactions over their lifetime amounts
to 1, 649, 192 transactions on the public Ethereum blockchain.

6.2 Manual Analysis Effort

ETHRACER outputs a set of pairs of traces exhibiting EO bugs. As
shown in Figure 6c, for EO bug-flagged contracts, ETHRACER pro-
duces only a few minimized witness pairs, on average two, with
the majority having only a single pair. Similarly, the contracts with
callback-related bugs have only one witness pair for all vulnerable
contracts. Accordingly, manual post-hoc analysis effort is minimal.

To confirm the simplicity of the post-hoc analysis and to deter-

mine whether the EO violations are intentional (benign) or buggy,
we manually analyze the flagged cases. We take a 127 randomly
chosen contracts flagged for EO violations, of which 27 contracts
(with source code) were flagged for unmatched callbacks. For each
of the inspected contracts, we need only a few minutes to check
whether the EO violation is true bug or likely benign.
On-chain transaction ordering. For the 100 contracts we ana-
lyzed, 52% are closer to the examples presented in Section 2 and we
adjudged them to be true bugs. Apart from the example presented
in Section 2, we find several other examples of subtle true EO vio-
lations. Two additional examples of such contracts named Contest
and Escrow, are presented in supplementary material.

We deemed that 48% of the 100 analyzed contracts were benign
violations of the EO definition. These contracts were straightfor-
ward to analyze, as they have a small set of global variables shared
between functions of the traces which take different values upon re-
ordering. Consider the ERC721 contract shown in Figure 5, where
addPermission and removePermission are called by the contract’s
owner to update the common variable allowPermission.
Off-chain asynchronous callbacks. For these violations, among
the 47 flagged contracts, 27 have Solidity source code, which we
manually analyze. 23 of these contracts have true and subtle EO
violations, which follow two predominant patterns:

e Unprocessed _querylId: The first class occurs in contracts that do
not process _queryId in their __callback function. The contracts
assume Oraclize is synchronous, i.e., assume that each query to
Oraclize is immediately followed by a reply from Oraclize. The
contract BlockKing first analyzed by Sergey and Hobor [43], is an
example of such a contract. We have identified one more contract,
called Gamble, that suffers from a similar mistake.

e Improper check on Ether: This second class of bugs is more
subtle and has not been identified in prior works. It occurs in
contracts similar to our Casino example from Section 2.

Out of 27 contracts flagged for unmatched callbacks, 4 contracts

have EO violations which seem to be benign (or intended logic) in

contracts. Specifically, they have two or more traces that differ in
output dependent on the timestamp of the mined block.

Exploiting the Laws of Order in Smart Contracts

ISSTA *19, July 15-19, 2019, Beijing, China

‘3 70 —— source code 100
©
560 -== byte code 0
c Q 80
o)
O 50 o
.y 5
©40 £ 60
g 3
& 30 o
« 20 9]
8 el
€10 L 20
>
Z 0

0 10 20 30 40 50 60 01T 2 3

Number of functions

(a) # functions in flagged contracts.

4

Number of HB relations

(b) Impact of the # HB-related events pairs.

o wu
o o

H o= N N W W
u o u o u
o O O o o

Number of flagged contracts

Il_ll- -
1 3 5 7 9 11 13 15 17 19
Number of minimized witness pairs

5 6 7-2020-30>30

(c) # minimal traces in flagged contracts.

Figure 6: (a) shows that a majority of flagged contracts have 10 — 30 functions, (b) demonstrates the reduction in traces to fuzz,
with increasing number of HB-related event pairs and (c) shows that ETHRACER outputs only 1-3 witnesses for most contracts.

6.3 Performance

About 95% of the contracts require 18.5 minutes of analysis time
with ETHRACER on average per contract, whereas only 5% of them
timeout after 150 minutes. Of the 18.5 minutes, ETHRACER spends
about 15 minutes to produce events and 3.5 minutes for fuzzing.

Figure 6a provides a quantitative explanation for this efficiency.
It shows the total number of functions in contracts; one can see
that a large number of contracts have over 10 callable functions,
thus analyzing all permutations would lead to prohibitively large
number of traces to test concretely.

Figure 6b shows the correlation between the size of the hb rela-

tion set and the number of potential traces created by the fuzzer.
As shown in the figure, an increase in the number of hb relations
leads to a decrease in the number of possible traces the fuzzer needs
to create and check. For instance, on average of all analyzed con-
tracts, having a single hb relation reduces the number of possible
traces by nearly 42%. Moreover, the average number of HB relations
produced by ETHRACER for a contract is nearly 5.5.
An illustrative example. ETHRACER finds the ERC-20 bug men-
tioned in Section 2 in 5 minutes, producing a single minimized
pair of traces to inspect. The tool first collects all 11 functions
of the contract and filters 8 of them leaving only for 3 functions
for re-ordering. Without this optimization, our hb analysis (Sec-
tion 4.3) would inspect (%)) or 55 pairs instead of 3. After 4 minutes
of symbolic analysis to recover hb relations, ETHRACER creates 7
concrete events as input to the fuzzer. In 1 minute, the fuzzer ana-
lyzes traces of length ranging from 2 to 6 and it analyzes a total of
2,560 traces. This number would be 8, 652 without our hb relation
analysis, which has over 3x improvement to concrete fuzzing in this
example. After fuzzing, ETHRACER outputs 43 traces which have
bugs and the minimization step produces a single pair of traces to
inspect. This is precisely the pair presented in Section 2.

6.4 Comparing ETHRACER and OYENTE

OYENTE is a symbolic execution analyzer which flags contracts
with two different traces having different Ether flows (i.e., changes
in a contract’s balance) [30, 40]. It tries to produce contexts m; and
my such that traces (e1, e2) and (e, e1) result in two different ether
flows where e; = (f1,m1) and ey = (f2, my). Here, f1 and f; can

371

be the same function. It uses our aforementioned baseline strategy
of enumerating all pairs (traces of depth two) and symbolically
checking if the two paths lead to two different balances.

Our definitions of event ordering (EO) may appear similar to
transaction ordering dependency bugs (TOD) defined and analyzed
by the OYENTE tool. There is, however, several definitional and
technical differences between the two tools:

(1) OYENTE does not reason about unmatched callbacks; TOD bugs
are a strict subset of on-chain EO violations.

OYENTE detects two paths with different send instructions, which,
unlike EO bugs, are characterized by differences in the final out-
put states. OYENTE does not account for global state changes in a
transaction other than account balances. Thus, TOD detections
by OYENTE may include two traces sending to the same recipient,
causing no modifications to state other than balances.

OYENTE checks for differences between pairs of traces to prevent
combinatorial explosion in path space analysis. ETHRACER can
analyze any combination of traces; we chose a limit of 6 in our
experiments. The key reason for its scalability is the use of its
HB-relation analysis and analysis optimizations.

OYENTE only reports symbolic path constraints responsible for
TOD, without giving concrete inputs which exhibit the bug; this
is unlike ETHRACER which produces concrete and minimized
event traces for the analyst to inspect.

(2)

Experimental Comparison. To enable a manual analysis of re-
sults, we compared ETHRACER and OYENTE on 5, 000 contracts with
available Solidity source code with OYENTE and ETHRACER. First,
OYENTE has no notion of linearizability and thus it detects none
of contracts with unmatched callbacks that ETHRACER flags. For
on-chain transaction ordering, ETHRACER flags 674 contracts, while
OYENTE flags 251 cases when its internal default timeout is set
to 150 minutes (same as ETHRACER) and in online mode.'?Also,
Oyente terminates for all tested contracts in this timeout.

Out of the 251 contracts, 78 are flagged by ETHRACER as well.
We manually inspect all the remaining 173 contracts flagged by
OYENTE. We find that all these cases are false EO violations—this

2In the online mode, OYENTE reads the values of the global variables from the actual
blockchain, similar to ETHRACER in its default mode.

ISSTA °19, July 15-19, 2019, Beijing, China

confirms that ETHRACER finds all of true TOD violations flagged
by OYENTE, and finds more than double of EO bugs which extend
beyond TOD bugs as well. Few additional case studies which only
ETHRACER finds, apart from the ones in Section 2 are given in the
supplementary material. Our manual analysis finds that OYENTE
flags TOD false positives mainly for two reasons. First, OYENTE
assumes that different Ether flows always send Ether to different
addresses, which is often not the case. Second, in contracts with zero
balance, all Ether flows can only send zero Ether, thus they do not
differ in output balances although OYENTE flags them incorrectly.

7 RELATED WORK

Our work generalizes the class of bugs arising due to non-deterministic
scheduling of concurrent transactions. The work by Luu et al. [30]
identified a specific kind of on-chain EO violations related to bal-
ance updates and checked for differences across only a pair of paths.
Our work extends this to longer traces and full state differences, find-
ing nearly 4x more true EO violations of previously unknown bugs.
Our class of bugs are unrelated to liveness or safety properties iden-
tified more recently by symbolic execution techniques [26, 27, 38].
At a technical level, these works provide robust symbolic execution
systems which is equivalent to our assumed starting baseline tech-
nique. However, in this work, our techniques are complementary
to the baseline, directly addressing the combinatorial blowup due
to checking traces of large lengths. To show this empirically, we
compared ETHRACER to the open-source OYENTE that operates on
bytecode, in Section 6.4. Alternative systems such as ZEus [26]
could be used instead of OYENTE, but ZEUs is not publicly available
and operates on Solidity source rather than bytecode.

Sergey and Hobor assert that many issues stemming from the
nondeterministic transactional nature of smart contracts are analo-
gous to well-studied bug classes in shared-memory concurrency [43].
For instance, TOD is a kind of event race [15, 41], while DAO and
mishandled responses from asynchronous callbacks service are a
violation of logical atomicity [21, 22]. Knowledge of some of those
issues has grown in the community [11], but we are not aware of
any other principled tool that detects them at scale.

The most related work to our approach to finding unmatched
callbacks is the dynamic analysis by Grossman et al. [21] for de-
tecting of DAO-like re-entrancy vulnerabilities [13, 45]. Their work
checks for a specific linearizability property of Effectively Callback
Freeness (ECF): a contract ¢ is ECF iff for any transaction involv-
ing a reentrant call to ¢ one can construct an equivalent trans-
action without reentrant calls. Their dynamic analysis employs
the notion of Invocation Order Constraint (I0C) graph, which only
captures the fine-grained shape of a contract execution within a
single transaction. Verifying ECF dynamically is drastically simpler
than challenge tackled by ETHRACER, as ECF entails checking the
commutativity reads/writes of functions under a single transac-
tion execution. In this paper, we are interested in handling multi-
transactional executions and the associated combinatorial blowup
associated. Our notion of hb-relations and our dynamic symbolic
analysis are entirely different. Consequently, ETHRACER finds 47
callback-related errors and 674 on-chain EO violations in about
ten thousand contracts, none of which are reported in the work
by Grossman et al. [21]. Their work finds 9 contracts which are

372

Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena

vulnerable to re-entrancy bugs on the Ethereum public blockchain,
which fall outside the goals and definition of EO violations.

Concurrent work on the SErvors [5] tool for automatically gener-
ating commutativity conditions from data-structure specifications
has been successfully used to confirm the presence of a known lin-
earizability violation in a simple Oraclize-using contract BlockKing

[43]. However, SERvOIs can only work with an object encoded in
a tailored domain-specific language, thus, it cannot be applied for
automatically detecting bugs at scale of an entire blockchain.

Other approaches based on symbolic analysis of Solidity code or
EVM implementations have been employed to detect known bugs
from a standard “smart contract vulnerability checklist” [4, 14, 31] in
tools, such as MYTHRILL [34, 35], SMARTCHECK [46], SECURIFY [49],
and MANTICORE [33], none of which addressed EO bugs.

Our work shares similarity to a vast body of research on checking
linearizability and data race detection in traditional programming
languages [7, 8, 10, 17, 32, 36]. One might expect that some of
those tools could be immediately applicable for the same purpose
to smart contracts. The main obstacle to do so is that, unlike exist-
ing well-studied concurrency models (sequential consistency [28],
Android [7], etc), Ethereum contracts do not come with the formally
specified model of explicit synchronization primitives or have ex-
plicit programming abstractions. Because of this, our procedure for
inferring intrinsic hb relations is considerably different from prior
works. We believe our approach lays out useful abstractions for
future works investigating concurrency in smart contracts.

While our analysis is designed to detect concurrency-related
bugs at scale, a complementary approach would be to mechanically
verify a contract’s implementation to adhere to the desired atomic-
ity/race freedom properties. At the moment, a number of efforts
resulted in a complete mechanisation of EVM semantics [50] in var-
ious frameworks for interactive and automated proofs: F* [6, 20],
Isabelle/HOL [3, 24], Coq [25], and K [23, 42]. It should be possible to
encode our properties of interest on top of those semantics, allowing
for the proofs similar to what has been done before for concurrent
objects [16, 44], providing the ultimate safety guarantees. In this
regard, we consider our tool to be complementary to those future
efforts, filling the niche modern race detectors occupy for efficiently
finding bugs in deployed concurrent applications [7, 9, 18].

8 CONCLUSION

We have studied event-ordering bugs in Ethereum smart contracts
by exploiting their similarity to two classic notions in concurrent
programs: linearizability and synchronization violations. We have
provided a formal model for these violations. We have shown how
to infer intrinsic happens-before relations from code and demon-
strated how to use such relations to shrink the bug search space.

ACKNOWLEDGEMENTS

We thank Shweta Shinde and Shiqi Shen for their valuable com-
ments and their help with writing a previous version of this paper.
We thank sponsors of the Crystal Center at National University Of
Singapore which has supported this work. Further, Ivica Nikolic
is supported by the Ministry of Education, Singapore under Grant
No. R-252-000-560-112. Aquinas Hobor was partially supported by
Yale-NUS College grant R-607-265-322-121.

Exploiting the Laws of Order in Smart Contracts

REFERENCES

(1]

=
&

[14]

[15]

[16

[17]

=
&

[19]

[20

[21

[22]

[23

2018. Ethereum Github. https://github.com/ethereum/EIPs/issues/738. Accessed:
2018-05-05.

2018. Etherscan. https://etherscan.io. Accessed: 2018-05-05.

Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards
Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL. In CPP. ACM,
66-77.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts (SoK). In POST (LNCS), Vol. 10204. Springer, 164—
186.

Kshitij Bansal, Eric Koskinen, and Omer Tripp. 2018. Automatic Generation
of Precise and Useful Commutativity Conditions. In TACAS (Part I) (LNCS),
Vol. 10805. Springer, 115-132.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. Formal
Verification of Smart Contracts: Short Paper. In PLAS. ACM, 91-96.

Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2015. Scalable race detection
for Android applications. In OOPSLA. ACM, 332-348.

Sam Blackshear, Nikos Gorogiannis, Peter W. O’'Hearn, and Ilya Sergey. 2018.
RacerD: Compositional Static Race Detection. PACMPL OOPSLA (2018).
Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. 2015.
Tractable Refinement Checking for Concurrent Objects. In POPL. ACM, 651~
662.

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. 2010. Line-
up: a complete and automatic linearizability checker. In PLDI. 330-340.
ConsenSys Inc. 2018. Ethereum Smart Contract Security Best Practices: Known
Attacks. https://consensys.github.io/smart-contract-best-practices/known_
attacks/

Leonardo Mendonga de Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT
Solver. In TACAS (LNCS), Vol. 4963. Springer, 337-340.

Michael del Castillo. 2016. The Dao attack. https://www.coindesk.com/dao-
attacked-code-issue-leads-60-million-ether-theft/ 16 June 2016.

Kevin Delmolino, Mitchell Arnett, Ahmed E. Kosba, Andrew Miller, and Elaine
Shi. 2016. Step by Step Towards Creating a Safe Smart Contract: Lessons and
Insights from a Cryptocurrency Lab. In FC 2016 International Workshops (LNCS),
Vol. 9604. Springer, 79-94.

Dimitar Dimitrov, Veselin Raychev, Martin T. Vechev, and Eric Koskinen. 2014.
Commutativity race detection. In PLDI. ACM, 305-315.

Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Andersen, and
Lars Birkedal. 2017. Caper - Automatic Verification for Fine-Grained Concurrency.
In ESOP (LNCS), Vol. 10201. Springer, 420-447.

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient and precise
dynamic race detection. In PLDI. ACM, 121-133.

Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner dynamic analy-
sis framework for concurrent programs. In Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering. ACM,
1-8.

Brian Goetz, Tim Peierls, Joshua J. Bloch, Joseph Bowbeer, David Holmes, and
Doug Lea. 2006. Java Concurrency in Practice. Addison-Wesley.

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. In POST
(LNCS), Vol. 10804. Springer, 243-269.

Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online detection of effectively
callback free objects with applications to smart contracts. PACMPL 2, POPL
(2018), 48:1-48:28.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. 12, 3 (1990), 463-492.

Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip
Daian, Dwight Guth, Daejun Park, Yi Zhang, Brandon Moore, and Grigore Rosu.

373

[24

@
=

'S
)

@
&,

o w ww
Lo 22 9

S
Kot

ISSTA *19, July 15-19, 2019, Beijing, China

2018. KEVM: A Complete Semantics of the Ethereum Virtual Machine. In CSF.
IEEE. To appear.

Yoichi Hirai. 2017. Defining the Ethereum Virtual Machine for Interactive The-
orem Provers. In 1st Workshop on Trusted Smart Contracts (LNCS), Vol. 10323.
Springer, 520-535.

Yoichi Hirai. 2017. Ethereum Virtual Machine for Coq (v0.0.2). Published online
on 5 March 2017. https://medium.com/@pirapira/ethereum-virtual-machine-
for-coq-v0-0-2-d2568e068b18

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:
Analyzing Safety of Smart Contracts. In NDSS.

Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum to
Automatically Exploit Smart Contracts. In USENIX Security.

Leslie Lamport. 1978. The Implementation of Reliable Distributed Multiprocess
Systems. Computer Networks 2 (1978), 95-114.

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (1978), 558-565.
Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.

Making Smart Contracts Smarter. In CCS. ACM, 254-269.

Richard Ma, Steven Stewart, Vajih Montaghami, Ed Zulkoski, and Leonardo
Passos. 2017. Quantstamp : The protocol for securing smart contracts. https:
//quantstamp.com/

Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race detection for
Android applications. In PLDI. ACM, 316-325.

Manticore 2018. Manticore: A symbolic execution tool for analysis of binaries
and smart contracts. https://github.com/trailofbits/manticore

Bernhard Mueller. 2018. How Formal Verification Can Ensure Flawless Smart
Contracts. https://media.consensys.net/how-formal-verification-can-ensure-
flawless-smart-contracts-cbda8ad99bd1

Mythril 2018. Mythril: A security analysis tool for Ethereum smart contracts.
https://github.com/b- mueller/mythril

Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection
for Java. In PLDI. ACM, 308-319.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf

Ivica Nikoli¢, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018).

Oraclize 2016. Oraclize — Blockchain Oracle service, enabling data-rich smart
contracts. http://www.oraclize.it.

Oyente 2018. Oyente: An Analysis Tool for Smart Contracts.
com/melonproject/oyente

Veselin Raychev, Martin T. Vechev, and Manu Sridharan. 2013. Effective race
detection for event-driven programs. In OOPSLA. ACM, 151-166.

Grigore Rosu. December 2017. ERC20-K: Formal Executable Specification of
ERC20. https://runtimeverification.com/blog/?p=496

Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart
Contracts. In 1st Workshop on Trusted Smart Contracts.

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized
Verification of Fine-grained Concurrent Programs. In PLDI. ACM, 77-87.
Emin Giin Sirer. 2016. Reentrancy Woes in Smart Contracts.
hackingdistributed.com/2016/07/13/reentrancy-woes/ 13 July 2016.
SmartCheck 2018. SmartCheck. https://tool.smartdec.net/

Solidity 2016. Solidity: A contract-oriented, high-level language for implementing
smart contracts. http://solidity.readthedocs.io

Nick Szabo. 1996. Smart Contracts: Building Blocks for Digital Markets.

Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018).

Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. https://ethereum.github.io/yellowpaper/paper.pdf

https://github.

http://

https://github.com/ethereum/EIPs/issues/738
https://etherscan.io
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
https://medium.com/@pirapira/ethereum-virtual-machine-for-coq-v0-0-2-d2568e068b18
https://medium.com/@pirapira/ethereum-virtual-machine-for-coq-v0-0-2-d2568e068b18
https://quantstamp.com/
https://quantstamp.com/
https://github.com/trailofbits/manticore
https://media.consensys.net/how-formal-verification-can-ensure-flawless-smart-contracts-cbda8ad99bd1
https://media.consensys.net/how-formal-verification-can-ensure-flawless-smart-contracts-cbda8ad99bd1
https://github.com/b-mueller/mythril
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://www.oraclize.it
https://github.com/melonproject/oyente
https://github.com/melonproject/oyente
https://runtimeverification.com/blog/?p=496
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
https://tool.smartdec.net/
http://solidity.readthedocs.io
https://ethereum.github.io/yellowpaper/paper.pdf

	Abstract
	1 Introduction
	2 Motivation
	2.1 Ethereum Smart Contracts
	2.2 Event-Ordering Bugs

	3 Overview
	3.1 Problem
	3.2 Our Solution

	4 EthRacer Design
	4.1 Contract Concurrency Model
	4.2 The Core Algorithm
	4.3 Extracting HB Relations
	4.4 Optimizing for Asynchronous Callbacks

	5 Implementation
	5.1 Dynamic Symbolic Execution Engine
	5.2 Fuzzing Event Traces

	6 Evaluation
	6.1 Efficacy of EthRacer
	6.2 Manual Analysis Effort
	6.3 Performance
	6.4 Comparing EthRacer and Oyente

	7 Related Work
	8 Conclusion
	References

