
Per-User Histograms In the Shuffle Model

1 Introduction

Estimating a histogram is a fundamental problem with applications in many domains including data analytics,
machine learning, and recommender systems. In its most common version, the problem concerns with identifying a
single histogram representing counts over a domain of items across all users. For instance, the counts of products
bought, movies watched, or websites browsed by all the users. Importantly, in this query each user either interacts
with an item or not, thus having a binary vector of size equal to the size of the item domain. Hence, the typical
histogram estimation is an aggregate query that is useful to study common patterns across a user population. In
contrast, we are interested in the problem of per-user histogram i.e., we seek to estimate a separate histogram for
every individual user.

Per-user histograms are useful for providing personalized services to the users since the distribution of counts across
different item classes for each user can represent their personal preferences and interests. An analyst can perform
several queries on top of the histograms, such as computing the top-k heavy hitters, estimation of the parameters
of the distribution. For instance, Google has recently released a new framework called Topics top (2023; 2022) for
collecting the most popular topics, pertaining to the visited websites, from users’ browsing history. These topics are
revealed to the content providers, such as the advertisers, to show personalized content to the users when they surf
the internet. Here, the topics are item classes and each website is an item.

However, the histograms might encode personal information about the users and are hence, sensitive. Therefore,
our aim is to support this computation while providing rigorous privacy guarantees under the differential privacy
(DP) framework. Specifically, we focus on the shuffle DP model which is an extension of the local DP model where a
trusted shuffler uniformly permutes the noisy responses from the users before releasing them. The shuffling of the
responses results in privacy amplification Erlingsson et al. (2019); Cheu et al. (2019b); Balle et al. (2019); Cheu et al.
(2019a); Feldman et al. (2022). In other words, this improves the utility.

In this paper, we ask the question: “Can the shuffle model of DP result in privacy amplification for the per-user
histogram query?" We investigate the above question and provide a privacy amplification result and utility analysis.
To the best of our knowledge, this is the first instance of analyzing the implications of shuffling in the context of a
non-aggregate query.

2 Preliminary

In this section, we present the necessary background.

Notations. [n] denotes the set {1, · · · , n}. Let H ∈ Nd represent a histogram of counts over a domain of size d,
H[i] ∈ N denote the count of the i-th bin and sH =

∑d
i=1 H[i] denote the total count of the histogram. Additionally,

H̄ represents the histogram after normalization, i.e., H̄[i] = H[i]
sH

,∀i ∈ [n]. A permutation of a set S is a bijection
S 7→ S. The set of permutations of [n], n ∈ N forms a symmetric group Sn. We use {·} to represent a set whereas
⟨·⟩ represents an ordered sequence. As a shorthand, we use σ(x) to denote applying permutation σ ∈ Sn to a data
sequence x = ⟨x1, · · · , xn⟩ of length n. Additionally, σ(i), i ∈ [n], σ ∈ Sn denotes the value at index i in σ and σ−1

denotes its inverse.
Definition 1 (c-Neighboring Histograms). Two histograms H,H ′ ∈ Nd×Nd are defined to be c-neighboring histograms
where c ∈ [0, 1] if

1. both the histograms have the same total count, i.e., sH = sH′ , and

2. the histograms differ from each other in by at most ⌊c · sH⌋ counts, i.e., |H −H ′|1 ≤ ⌊c · sH⌋

For example from the above definition, for a given histogram H, any histogram H ′ with the same total count that
differs from H by at most 5% of the total count is defined to be its 0.05-neighbor.
Definition 2 ((ϵ, c)-Histogram Local Differential Privacy (hLDP)). A randomized mechanism A : [0, 1]d 7→ Y satisfies
(ϵ, c)-LDP if for any two c-neighboring histograms (H,H ′) ∈ Nd × Nd we have

Pr[A(H) = y] ≤ eϵPr[A(H ′) = y] (1)

(ϵ, c)-hLDP thus implies that an adversary cannot distinguish between c-neighboring histograms. Note that we
define c to be a fraction of the histogram’s total count rather than a concrete integral value for a more uniform
privacy semantics. Consider two histograms H1 and H2 with total count 5 and 100, respectively. Now consider
two “neighboring" histograms H ′

1 and H ′
2 such that sH1 = sH′

1
, |H1 − H ′

1| = 5 and sH1 = sH′
1
, |H1 − H ′

1| = 5,
respectively. Clearly, H1 and H ′

1 could be radically different from each other whereas H2 and H ′
2 would be quite

similarly distributed. This introduces a disparity in the privacy semantics based on the total count of the histograms.
On the other hand, a difference of 5% for both the histograms implies a more equitable privacy semantics.

Next, we define a central DP version of the above privacy as follows.
Definition 3 ((ϵ, δ, c) - Histogram Differential Privacy (hDP)). Let H = (H1, · · · , Hn) and H′ =
(H1, · · · , Hi−1, H

′
i, Hi+1 · · · , Hn) be two sets of n such that (Hi, H

′
i) are c-neighboring. A randomized mechanism
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A : (Nd × · · · × Nd) 7→ O is (ϵ, δ, c)-hDP, if for any o ∈ O we have:
Pr[A(H) = o] ≤ eϵPr[A(H′) = o] + δ (2)

Compared to the standard central DPcase, here we are dealing with a “dataset" of histograms – each user contributes
an individual histogram (which is analogous to a “record"). The adversary now cannot distinguish if one of the
“records" (histogram) is replaced by a neighboring one (c-neighboring histogram), thereby limiting the leakage about
about an individual user contribution.

3 Proposed Scheme

Problem Setting. We consider a setting with n users Ui, i ∈ [n] and an untrusted server, S. Each user Ui holds
a private histogram of counts Hi ∈ Nd defined over a domain of size d. The server S is interested estimating the
histogram Hi for each user. Additionally, just like in the shuffle model, we have a trusted shuffler who mediates upon
the noisy responses of each of the users before releasing it to the untrusted server.

Algorithm 1
Input: ϵ - Privacy Parameter; Hi - Histogram of user Ui

Output: Ĥ − ⟨Ĥ1, · · · , Ĥn⟩ An ordered sequence of noisy histograms such that Ĥi is treated as the response
from user Ui

Users
1: For i ∈ [n]
2: For j ∈ [d] ▷ Construct two copies of the histogram with privacy budgets ϵ1 and ϵ− ϵ1
3: Wi[j] = H̄i[j] + η1, η1 ∼ Lap( 2cϵ1 )

4: Ti[j] = H̄i[j] + η2, η2 ∼ Lap( 2c
ϵ−ϵ1

)

5: Ri[j] =
ϵ21Ti[j]+(ϵ−ϵ1)

2Wi[j]

ϵ21+(ϵ−ϵ1)2
▷ Construct a better estimate using the two copies

6: End For
7: User Ui sends the noisy histograms (Wi, Ri) to the shuffler
8: End For

Shuffler
9: Cluster the users into g groups G = {G1, · · · , Gg} based on a similarity metric on the noisy histograms W =

{W1, · · · ,Wn}
10: For j ∈ [g]
11: Let Gj = ⟨g11, · · · , g1|G1|⟩ be the sequence of users in Gi arranged in order of their indices
12: σj ∈R S|Gj | ▷ Sample a random permutation for shuffling group Gi

13: For l ∈ [|Gj |]
14: Ĥgjl = R̄gjσj(l)

▷ l-th user of group Gj is assigned the value of σj(l)-th user after shuffling
15: End For
16: End For
17: Sends Ĥ = ⟨Ĥ1, · · · , Ĥn⟩ to the untrusted server

3.1 Protocol Description

The naive solution is to release the histogram noised via the Laplace mechanism. In this paper, we look at
improving the utility by considering an intermediate shuffler. Typically, the shuffler applies a uniform permutation
to the noisy responses of the users. This anonymizes the user responses, resulting in privacy amplification by
roughly a factor of

√
n. Consequently, the utility is improved over a pure LDP mechanism. When the final

query is an aggregate, the order in which the individual users are tagged with the noisy responses after the
shuffling is inconsequential for utility. However, recall in our setting we require a separate measure for each
user. Hence, the utility has to be measured w.r.t every user Ui which depends on the specific (noisy) histogram
that is assigned to Ui. Consequently, the standard shuffling paradigm (of uniform random permutation) is
not amenable to our setting – a user can be assigned a histogram with a completely different distribution.
For instance, assume that the server wants to estimate the top-k values from the individual histograms – then
a user can be assigned a histogram with a completely different set of top-k values which completely destroys their utility.

Key Idea. Instead of uniformly shuffling all the users, we partition the users into several groups and then uniformly
shuffle them within the groups. Specifically, the groups are constructed by clustering the noisy histograms based on a
similarity (distance) metric. This ensures that even after shuffling, the users will be assigned a (noisy) histogram that
is similar to their original histogram. However, the challenge here is that the construction of the groups itself is now
data-dependent thereby leaking privacy. In this paper, we provide an analysis of the resulting privacy amplification
and utility (Theorem 2 and Theorem 3).

Protocol Details. Our protocol is outlined in Algorithm 1 and described as follows. Each user Ui computes two
copies of the histograms, Wi and Ti with privacy budgets ϵ1 and ϵ − ϵ1, respectively (Steps 3-4). Next, user Ui

combines them via weighted average1 to obtain a better estimate R (Step 5) and releases two copies (Wi, Ti)to the
1The choice of our weights minimizes the variance over all unbiased estimators.
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shuffler (Step 7). The shuffler uses the first copies of the histograms W = {W1, · · · ,Wn} to cluster the users into
groups based on a similarity metric. Next, it shuffles the noisy responses of the users of every group Gj , j ∈ [g]
according to a random permutation σj ∈ S|Gj |. Note that the second copy of the histogram R = {R1, · · · , Rn} is
used for this step (Steps 10-16). In other words, user Ugjl , i.e., the l-th user (when arranged in order of the indices –
Step 11) of group Gj is assigned the noisy histogram Rgjσj(l) of the σj(l)-th user Ugjσj(l)

(Step 14). Finally, the

shuffler releases the ordered sequence Ĥ to the untrusted server.

Illustrative Example. We illustrate our protocol with the following example. Consider a set of 10 users who are
partitioned into three groups G = {G1 = ⟨U2,U5,U7⟩, G2 = ⟨U1,U3,U6,U9⟩, G3 = ⟨U4,U8,U10⟩} based on the first
copies of the histograms W . Let the three random permutations picked by the shuffler be σ1 = (3, 1, 2), σ2 = (3, 4, 2, 1)
and σ3 = (2, 1, 3). For group G1, it means that the 1st user U2 is going to be assigned the value of the 3rd
(since σ1(1) = 3) user U7, i.e., Ĥ2 = R̄7. Following suit for all other users, we obtain the final ordered sequence
Ĥ = ⟨R̄6, R̄7, R̄9, R̄8, R̄2, R̄3, R̄5, R̄4, R̄1, R̄10⟩
Design Choices. Here we discuss our rationale behind our design choices in Algorithm 1.

Two copies of histogram. It is necessary to use two separate copies of the data, one for the (data-dependent) clustering
by the shuffler and the other for the actual output release to the server (after shuffling) for obtaining privacy
amplification in our setting. Intuitively, the reason is that the knowledge of the groups itself leaks privacy. We
formalize this as follows. Let us consider a generic protocol A : {[0, 1]d}n : Yn (detailed in Algorithm 2 in Appendix)
that uses a single copy of the (noisy) data for both the clustering and the final output release as follows. First each
user Ui releases a single noisy response Zi = Ri(Hi) where randomizer Ri : [0, 1]

d 7→ Y satisfies (ϵ, c)-hLDP. Next, the
shuffler partitions the users into groups G = {G1, · · · , Gg} where G is a non-trivial function of the noisy responses
G = f(Z1, · · · , Zn) and releases the shuffled responses Z such that the responses are uniformly randomly shuffled
within each group.

Theorem 1. There exists a function f(·) such that A′ : {[0, 1]d}n 7→ Yn cannot satisfy (ϵ′, δ, c)-hDP for any ϵ′ < ϵ
for all δ ≥ 0.

Choice of clustering algorithm. The goal of the clustering algorithm is to cluster similar histograms together. As such,
any standard clustering algorithm can be used. For instance, DBSCAN Ester et al. (1996) with distance metric, such
as Jensen-Shannon divergence (after re-normalizing the noisy histograms), could be good choice. In case the original
data distribution was well separated to begin with, k-means clustering Hartigan & Wong (1979) could be used as well.

Privacy budget allocation. In case the user has a prior over the data distribution, they can optimize the privacy
budget allocation for ϵ1. We provide a formal analysis in the following section (Theorem 4).

3.2 Privacy and Utility Analysis

We assume that the groups G are known to the server. Although this is not explicitly evident from Algorithm 1, we
assume a worst-case server with this extra information. This is because the server could post-process the shuffled
histograms and cluster them again to get an estimate of the original groups (this would violate privacy amplification,
see Appendix B for more details). Next, we present a privacy amplification by shuffling result. An important point to
note is that the resulting privacy amplification is not uniform across all the users. In other words, the amplification
factor depends on the individual users.

Theorem 2 (Per-User Privacy Amplification Theorem). Let GUi
= {g1, . . . , g|GUi

|} be the group containing user
Ui, i.e., Ui ∈ GUi

. For any subset Q ⊆ GUi
, define r(Q) = maxu,v∈[|GUi

|] ∥Hu − Hv∥1. Algorithm 1 satisfies
(ϵ′, δ, c)-hDP for user Ui where

ϵ′ =


O
(
ϵ1 + (ϵ− ϵ1)min

{
1,minQ⊆P(GUi

)(1 +
r(Q)
c )
√

log 1
δ

|Q|

})
, if (ϵ− ϵ1) ≤ 1

O
(
ϵ1 +min

{
ϵ− ϵ1,minQ⊆P(GUi

)

√
e(ϵ−ϵ1)(1+

r(Q)
c ) log

1
δ

|Q|

})
, if (ϵ− ϵ1) > 1

(3)

where ϵ− ϵ1 ≤ log
(

|GUi
|

16 log( 2
δ )

)
and P(GUi

) is the power set of GUi
.

From the above theorem, we observe that we get privacy amplification only for (ϵ− ϵ1) portion of the privacy budget –
ϵ1 is used constructing the groups (Step 9) and results in no amplification (corollary of Theorem 1, see Appendix B
and C for details). W.l.o.g. in the above theorem, let us consider Q = GUi

for the simplicity of exposition. We observe
that the amplification depends on (1) the number of members in the group, |GUi

|, and (2) r(GUi
), the maximum ℓ1

distance between any pair of histograms belonging to GUi
– “diameter” of the cluster given by GUi

. This implies that
users who are clustered in a larger group (larger |GUi

|) and are positioned near the center of cluster (smaller r(GUi
))

would enjoy a higher amplification factor. The dependence on the first term is intuitive – larger the crowd to hide
among, better is the privacy – and is along the lines of prior work on amplification by shuffling. The intuition of the
second condition is as follows – users who are closer to the center of a cluster will get assigned to the same cluster
even after randomization with high probability, while users closer to the boundary might get assigned to different
clusters due to the introduced noise. Thus, the second condition is tied to the stability of the clustering algorithm.

Next, we present our utility theorem.
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Theorem 3 (Per-User Utility Theorem). Let GUi
= {g1, . . . , g|GUi

|} be the group containing user Ui, i.e., Ui ∈ GUi
.

The expected utility of user Ui ∈ G is given as follows:

E
[
∥ĤUi

− H̄Ui
∥1
]
≤ 1

|GUi
|

|GUi
|∑

j=1

∥HUi
−HUgj

∥1 +
2dc log n

δ√
ϵ21 + (ϵ− ϵ1)2

(4)

The first term accounts for the error obtained from replacing the value of Ui with that of a random user from the
group GUi

and this depends on how well the clustering algorithm works. The second term is the error introduced due
to the Laplace mechanism (for noising the histograms). Intuitively, our algorithm is suited for input data distributions
where (1) the clusters are well-separated since this implies that we would be able to form the groups accurately
even with a small privacy budget ϵ1 – this is a desirable condition because we get amplification only for the (ϵ− ϵ1)
portion of the budget, and (2) the individual clusters are dense, i.e., have small diameters – this means that any of
the histograms corresponding to the users in GUi

is a good estimate for Ui which reduces the first term in Eq. 4.

In light of the above discussion, we derive the following optimal privacy budget allocation for ϵ1 for a user assuming
some prior on the data distribution.
Theorem 4 (Optimum Budget Allocation). For Ui, suppose there are at least ni other users {Uj} such that

• ∥HUi
−HUj

∥1 ≤ cri, i.e., ri is the “diameter” of Ui’s cluster (group),

• all other users satisfy ∥HUi
−HUj

∥1 > cRi for some ri ≤ 2Ri, i.e., Ri the minimum separation from the
other clusters.

Then, using ϵ1 =
4d log n

δ

Ri
, Ui attains (ϵ′, δ, c)-hDP privacy guarantee in expectation where

E[ϵ′] =

O
(
ϵ1 + (ϵ− ϵ1)(1 + ri)

√
log 1

δ

ni

)
, if (ϵ− ϵ1) ≤ 1

O
(
ϵ1 +

√
e(ϵ−ϵ1)(1+ri)

log 1
δ

ni

)
, if (ϵ− ϵ1) > 1

(5)

The resulting expected utility is

E[∥ĤUi − H̄Ui∥1] ≤ 2ric+
2dc log n

δ√
ϵ21 + (ϵ− ϵ1)2

(6)

Additionally, for ϵ− ϵ1 ≤ 1, the chosen value of ϵ1 is optimal, i.e., it maximizes both the expected privacy guarantee
and utility.

Assuming a prior on the diameter of their cluster (ri) and the well-separatedness (Ri; ri ≤ 2Ri) of all the clusters, by
setting ϵ1 =

4d log n
δ

Ri
user Ui can maximize both the expected privacy guarantee (Eq. 5) and utility (Eq. 6).

4 Discussion and Future Work

Revealing amplified privacy parameter. An interesting observation here is that first the computation of the
amplified privacy budget is data-dependent and hence, revealing its value leaks privacy. Additionally, no party (users,
shuffler, server) in the setup has access to private data of all the users and hence, none of them can compute the
amplified budget. We argue this might be acceptable in practice as follows. As long as the users were satisfied with
releasing their data with the initial privacy budget ϵ, it might be okay for the users to not know the actual value of
the privacy parameter (after amplification) since after the shuffling it can only get better. Nevertheless, an interesting
direction to explore is releasing an estimate of the amplified privacy budget by the shuffler (computed using the noisy
responses from the users).

Per-user amplification. As observed in Theorem 2, the privacy amplification is user-dependent. Additionally, lower
the diameter of the clusters (r(Q)) better is the amplification. One way to improve the amplification is by trading-off
the number of users enjoying amplification for the actual amplification factor. Specifically, the shuffler can exclusively
feed the diameter of the clusters as a parameter in the clustering algorithm – only clusters with smaller diameters are
identified and rest of the points (users) are treated as outliers (analogously, these users are in singleton groups with
just themselves). Hence, it is possible in our scheme that some of the users, who have very different histograms, do
not enjoy any privacy amplification. This makes intuitive sense as it is harder to provide privacy for “outliers’ without
adversely affecting utility.

Differentially private clustering Currently, we perform the clustering as a post-processing operation on the first
copy of the noisy histograms W = {W1, · · · ,Wn}. However, another alternative is to consume the budget ϵ1 for an
algorithm directly tailored for clustering Chang et al. (2021)– this could potentially drive down the first term in Eq. 4.

Implementation of the shuffler. Note that the shuffler in our setup has to perform additional work (clustering) as
compared to that of the typical shuffle model (just uniform random shuffle across all users). One possible solution
is to implement it via trusted execution environments (TEE) as suggested by prior work, such as just Google’s
Prochlo Bittau et al. (2017) and Meehan et al. (2022).

Prior work on group shuffle. Prior work Meehan et al. (2022); Abouei & Canonne (2021) has also explored group
shuffle. Our work differs from them in the following ways. First, Abouei & Canonne (2021) addresses the problem of
releasing aggregate queries but with multiple shufflers – the users are partitioned into several groups (construction of
the groups is random and not data-dependent like ours), each group having its own local shuffler. Second, Meehan
et al. (2022) considers an inferential privacy framework where the groups are formed based on some public auxiliary
information.
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Estimating aggregate histograms privately is a fundamental problem that has been studied extensively in the context
of differential privacy Duchi et al. (2013); Erlingsson et al. (2014); Wang et al. (2017). A very common related task is
differentially-private heavy-hitters Qiao et al. (2021); Gillenwater et al. (2022); Durfee & Rogers (2019); McKenna
& Sheldon (2020); Ding et al. (2019); Steinke & Ullman (2015); Bafna & Ullman (2017); Steinke & Ullman (2017);
Dwork et al. (2018); Qin et al. (2016). In this problem, each user has a binary vector that represents their item
interactions from an item domain. The target is to find the most popular items across all users. Different mechanisms
have been proposed in the central DP and the local DP settings Dwork et al. (2014).

In the central DP setting, iterative peeling mechanisms have been proposed where either the report noisy-max
mechanism or exponential mechanism is applied iteratively to pick the top-K items (say with most frequency) Dwork
et al. (2014; 2018). These mechanisms may be inefficient when the item domain is large. To address this issue,
one-shot Laplace and exponential mechanisms have also been proposed Qiao et al. (2021); Durfee & Rogers (2019);
McKenna & Sheldon (2020). These mechanisms have been designed for both pure DP (ϵ−DP) and approximate
DP ((ϵ, δ)) settings although providing utility analysis for the approximate DP setting can be challenging Qiao et al.
(2021). More works have therefore analyzed the lower bounds on utility provided by these mechanisms Bafna &
Ullman (2017); Steinke & Ullman (2017).

In the local DP setting, most of the mechanisms designed in the central DP setting cannot be applied as-is since
there is no global view of all users’ data. In the local DP setting, randomized response mechanism and iteratively
improving the randomized-response mechanism are the typical solutions Erlingsson et al. (2014); Qin et al. (2016). To
improve the utility of these mechanisms the shuffle model has been proposed. In the shuffle model, an intermediate
shuffler is trusted to shuffle the noisy records before aggregating to delink the user from their record. This provides
privacy guarantees similar to the central DP setting, therefore, a higher utility. The principled system architecture
for shuffling was first proposed by Bittau et al. Bittau et al. (2017). This model was formally studied later in
Erlingsson et al. (2019); Cheu et al. (2019b). Erlingsson et al. Erlingsson et al. (2019) showed that for arbitrary
ϵ-LDPrandomizers, random shuffling results in privacy amplification. Cheu et al. Cheu et al. (2019b) formally defined
the shuffle DPmodel and analyzed the privacy guarantees of the binary randomized response in this model. See Cheu
(2022) for a survey on the existing literature on shuffle DP.

The problem that we propose in this work is very different from the aforementioned one. We aim to estimate histograms
per user. Conceptually, our motivation stems from creating personalized user profiles rather than computing aggregate
statistics across all users. To address the new technical challenges imposed by our problem setup, we design a new
mechanism which combines the traditional Laplace and shuffle mechanisms in a novel way—clustering the users based
on their noisy responses and shuffling the users within clusters. We believe that our mechanism by itself could be
interesting for other differentially private queries in the local DP setting. Our privacy definition of (ϵ, c)-hLDP for
histograms is inspired by previous work Ahmed et al. (2020).

B Proof of Theorem 1

Proof. We start the proof by considering a slight modification of the protocol – A′′ is identical to the A′ except that
now it explicitly releases the groups G along side the shuffled outputs Ẑ.

Lemma 5. A′′ is (ϵ, c)-hLDP.
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Proof. Note that the groups G are constructed by post-processing ⟨Z1, · · · , Zn⟩ before shuffling. Hence, this computa-
tion is still (ϵ, c)-hLDP which makes the full release (G, Ẑ) is (ϵ, c)-hLDP as well.

Now, coming back to A′ note that the untrusted server could run the same function f(·) on the shuffled responses Ẑ.
This could result in the exact same groups G (for instance - if f(·) is clustering algorithm the server would be able to
construct back the exact same groups since only all the labels (user ids) are shuffled within each group). Hence, by
lemma 5 this could result in an extra privacy leakage resulting in a (ϵ, c)-hLDP guarantee. This means we cannot
have a (ϵ′, δ, c)-hDP guarantee where ϵ′ < ϵ since hLDP is a stronger privacy guarantee than hDP.

Algorithm 2
Input: ϵ - Privacy Parameter; Hi - Histogram of user Ui

Output: Ĥ − ⟨Ĥ1, · · · , Ĥn⟩ An ordered sequence of noisy histograms such that Ĥi is treated as the response
from user Ui

Users
1: User Ui sends the noisy response Ri(Hi) = Zi where randomizer Ri : [0, 1]

d 7→ Y satisfies (ϵ, c)-hLDP to the
shuffler
Shuffler

2: Cluster the users into g groups G = {G1, · · · , Gg} based on some non-trivial function over the noisy responses
f(Z1, · · · , Zn) = G

3: For j ∈ [g]
4: Let Gj = ⟨g11, · · · , g1|G1|⟩ be the sequence of users in Gi arranged in order of their indices
5: σj ∈R S|Gj | ▷ Sample a random permutation for shuffling group Gi

6: For l ∈ [|Gj |]
7: Ẑgjl = Zgjσj(l)

▷ l-th user of group Gj is assigned the value of σj(l)-th user after shuffling
8: End For
9: End For

10: Sends Ẑ = ⟨Ẑ1, · · · , Ẑn⟩ to the untrusted server

C Proof of Theorem 2

Our proof will use the following privacy amplification by shuffling result of Feldman et al. (2022).

Theorem 6. Suppose A(·) satisfies ϵ-local differential privacy where ϵ ≤ log
(

n
16 log( 2

δ )

)
. Define A(H) =

⟨A(H1), . . . ,A(Hn)⟩. Then, for a random permutation σ, the release σ ◦ A(H) satisfies (ϵ′, δ)-DP, where

ϵ′ = log

(
1 +

eϵ − 1

eϵ + 1

(
8
√
eϵ log(4/δ)√

n
+

8eϵ

q

))
.

If ϵ ≤ 1, then ϵ′ = O(ϵ

√
log 1

δ

n ), ϵ′ = O(

√
eϵ

log 1
δ

n ) otherwise.

Proof. Let H = (H1, . . . ,Hi, , . . . , Hn) and H′ = (H1, . . . ,H
′
i, . . . ,Hn) where (Hi, H

′
i) denote two c-neighboring

histograms.

We will analyze the privacy guarantee of releasing {Wj : j ∈ [n]} and {Tj : j ∈ [n]}, separately, and then obtain
a user-dependent privacy guarantee by composition. It is easy to see the first release, {Wj : j ∈ [n]}, satisfies
(ϵ1, 0, c)-hDP as it is the Laplace mechanism.

Let Q ⊆ GUi
. To analyze the second release, first let AQ(H) = {Ag(Hg) : g ∈ Q} denote the outputs Ai(Hi) indexed

on the users in Q. The adversary sees the output σ(A(·)), where σ is a permutation on [n]. Observe this output has
the same distribution as σ(⟨µ(AQ(·)),A[n]\Q(·)⟩), where µ is a random permutation on Q. Since H,H′ are equal
on indices outside of Q, when given either H or H′ as an argument, we have that σ(A(·)) is a post-processing of
µ(AQ(·)).
By definition, it holds that ∥Hu − Hv∥1 ≤ r(Q) for all u, v ∈ Q, and by the triangle inequality it holds that
∥H ′

u −Hv∥1 ≤ r(Q) + c and ∥Hu −H ′
v∥1 ≤ r(Q) + c for all u, v ∈ Q where H ′

u means drawn from H′.

Thus, an ((1 + r(Q)
c )ϵ, 0)-local differential privacy guarantee holds for every pair A(H ′

u),A(Hv) and A(Hu),A(H ′
v),

when u, v ∈ Q. The result follows directly from using privacy amplification by shuffling Theorem 6.

D Proof of Theorem 3

Proof. Each Ri is equal to Hi + aη⃗1 + bη⃗2, where a =
ϵ21

ϵ21+ϵ22
and b = 1− a. We observe that Ĥi is a uniformly random

element from the set
{Hi + aη⃗1,i + bη⃗2,i : i ∈ GUi

},
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where η⃗1,i, η⃗2,i are d-dimensional vectors with each element drawn from Lap( 2cϵ1 ), Lap(
2c
ϵ2
), respectively. Thus, each

element of that aη⃗1,i + bη⃗2,i is sub-exponential with variance 4c2(a
2

ϵ21
+ b2

ϵ22
) = 4c2

ϵ21+ϵ22
. Thus, with probability at least

1− δ, we have ∥aη⃗1,i + bη⃗2,i∥1 ≤ 2cd log 1
δ√

ϵ21+ϵ22
. Thus,

E[∥Ĥi −Hi∥1] =
1

|Gi|
∑
j∈Gi

∥Rj −Hi∥1

=
1

|Gi|
∑
j∈Gi

∥Hj + aη⃗1 + bη⃗2 −Hi∥1

≤ 1

|Gi|
∑
j∈Gi

∥Hj −Hi∥+
1

|Gi|
∑
j∈Gi

∥aη⃗1 + bη⃗2∥1

≤ 1

|Gi|
∑
j∈Gi

∥Hj −Hi∥+
2cd log 1

δ√
ϵ21 + ϵ22

.

E Proof of Theorem 4

Proof. To begin, let ϵ1 be indeterminate, whose value will be decided later. Given the prior and applying Theorem 6,
each user will have a (ϵ′, δ, c)-hLDP guarantee where

ϵ′ = ϵ1 +


√

exp((ϵ− ϵ1)(1 + ri))
log 1

δ√
ni

ϵ− ϵ1 ≥ 1

(ϵ− ϵ1)
√

(1 + ri)
log 1

δ√
ni

ϵ− ϵ1 < 1
.

.

Let Q denote the group of ni users within distance cri of user i. Each Laplace noise vector η⃗1,i added to H̄i has
magnitude 2cd log n

δ

ϵ1
. Thus, in order to unambiguously identify Q, it is necessary that 1

2cRi ≥ 2cd log n
δ

ϵ1
, meaning

ϵ1 ≥ 4d log n
δ

Ri
.

By Theorem 3, user i will have expected utility at most 2ric +
2cd log n

δ√
ϵ21+(ϵ−ϵ1)2

. In the case ϵ − ϵ1 ≥ 1, we plug in

ϵ =
4d log n

δ

Ri
to obtain the desired privacy guarantee. Otherwise, observe that ϵ1+(ϵ−ϵ1)

√
(1 + ri)

log 1
δ√

ni
is an increasing

function of ϵ1, and thus the optimal utility guarantee occurs when ϵ =
4d log n

δ

Ri
.
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